If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+22t+40=0
a = 3; b = 22; c = +40;
Δ = b2-4ac
Δ = 222-4·3·40
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2}{2*3}=\frac{-24}{6} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2}{2*3}=\frac{-20}{6} =-3+1/3 $
| 4x=2(x+1)+4(x-1) | | -8=-8/5(x3) | | -8=-8/5x-3 | | 2;w-6)=w+3 | | 4x/3=320 | | 3,25^2+3,61^2+2,30^2=x^2 | | 1-(2-(3-x))=4x-(6-x) | | 2/2/2w=21/3/5 | | 7a-3a-6=6 | | (3x-4)+3=9 | | 9x7=3545 | | 6x+9=6x-3 | | (2x+11)+(4x+19)+(3x+15)=180 | | (3x+2)+(7x+10)+(3x-1)=180 | | 2/5x+3/4x=750 | | 8=3/4+12-c | | (2x+7)+(2x−16)=(6x+19) | | 1436,4=968+9,25x-129,9 | | (2x+5)+(2x+2)=(6x-7) | | 8+x=4x+2 | | -5h−6=6−3h | | 1/r+3=5 | | 3=3n-2n+6 | | 7(5x-36)=28 | | 2x+2=-x+5 | | 2-5.6/3=1-x/1.5 | | 2x+5=4(x-1)-x | | -0,5x+14=6 | | 9x=11.4 | | (2x-5.6)1.5=3(1-x) | | 7x-5=49 | | 7(4x-21)=21 |